If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=225
We move all terms to the left:
b^2-(225)=0
a = 1; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·1·(-225)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*1}=\frac{-30}{2} =-15 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*1}=\frac{30}{2} =15 $
| 9x+184=7x=156 | | -x6–16=-14 | | 12y=7y+30 | | 27^(3x+2)=9^3 | | 80=9v+7v | | -9.5x+0.63=-3.17 | | 7x+8+5x+40+10x=180 | | 19r−15r=8 | | 7x+2x=15×-6 | | 3x-7=-4x-14 | | 3a^2+12=-12a | | 1y+4=7y+8 | | m/2+17=24 | | x-9.8+1.4x+13,5+2.25x=4 | | 3(w-95)=-9 | | 14(5)-2y=34 | | x=2(3x-1)-4x+1/2 | | 57.6=6(m+2.9) | | (2i)(-2i)=0 | | 57.6=6(m+2.9 | | (x)=2(3x-1)-4x+1/2 | | 12√-1×x^2-x+6×√-1=0 | | 12-4x=10x-18x+32 | | x=-4/2-1/2 | | 6(z+4)=78 | | -8(1+4z)=-25 | | 6+9v=51 | | x+x+1=720 | | 10-3d=45 | | 4(c-15)=-48 | | 15=3s+6 | | 8k=720 |